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Stress Singularities in Dissimilar Orthotropic Composites
Containing an Interlaminar Crack

Hyung Jip Choi*
(Received June 11. 1993)

The problem of an interlaminar crack in dissimilar orthotropic composite materials under
in-plane and anti-plane loading conditions is investigated. In the analytical model, orthotropic
half-spaces are assumed to be bound together by a matrix interlayer which represents the
matrix-rich interlaminar region in the fiber-reinforced composite laminate. The crack is embed­
ded within the interlayer. With the utilization of the stiffness matrix approach, a system of
singular integral equations of the first kind is derived for the current mixed boundary value
problem. Numerical results are obtained for the interlaminar crack in a [0°/90°] fibrous
composite laminate subjected to three basic loadings in fracture mechanics. Under each applied
loading, variations of major and coupling stress intensity factors with respect to relative crack
size, crack location, and fiber volume fraction are illustrated.

Key Words: Dissimilar Orthotropic Composite Materials, Interlaminar Crack, Matrix Inter­
layer, Stiffness Matrix Formulation, Singular Integral Equations, Stress Inten­
sity Factors

1. Introduction

An issue of fundamental interest and technical
importance in the area of stress analysis oflayered
media has been increasingly focused on the situa­
tion when such materials contain a crack. Caused
by the material as well as geometric discontinuity,
the near-tip behavior is rather complicated via the
coupling among different modes of fracture even
under a simple loading condition. Furthermore,
the complex power singularity is attained for the
crack located along the material interface, giving
rise to the oscillatory crack-tip singular stress
field with the ensuing controversial phenomenon
of crack surface interpenetration. Specific solu­
tions can be found in the work of England (1965),

Erdogan and Gupta (1971), and Toya (1992), to
name a few, for the problem of an interface crack
in isotropic bimaterials. For the orthotropic coun­
terpart, solutions are due to Sun and Manoharan
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(1989), Dhaliwal and Saxena (1990), and Hwu
(1993). It was also illustrated by Sun and Mano­
haran (1989) and Toya (1992) that the respective
modes of strain energy release rates for the inter­
face crack do not converge in the conventional
concept of crack closure integrals. As discussed
by England (1965) and Atkinson (1977), how­
ever, such anomalous behavior is regarded to be
inevitable for the linear elastic solutions to this
class of crack problems, which are obtained based
on the ideal interface modeling with zero thick­
ness. On the other hand, Wu and Chiu (1991)

showed that the anti-plane shear interface crack
in both the isotropic and orthotropic bimaterials
retains the usual square-root singularities. A fur­
ther overview pertaining to this category of crack
problems was reported by Rice (1988) and Com­
ninou (1990).

Although the crack surface interference in a
tensile field is a highly localized one confined to
an extremely small region behind the crack tip,
various refined models have been proposed to
resolve the oscillatory behavior. For instance,
Comninou (1977) assumed that crack surfaces in
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Fig. 1 Configuration of bonded dissimilar orth­
otropic half-spaces containing an inter­
laminar crack in a matrix interlayer

where O"ii(X, z) and r,Ax, z), i, j=x, y, z, are the
normal and shear stress components, respectively,
and Cij, i, j= 1, 2, "', 6, are the elastic stiffness
constants which take on the different values for
the upper and lower orthotropic materials.

u=u(x, z), v=v(x, z), w=w(x, z) (1)

where u, v and ware the displacement compo­
nents in the x-, yo, and z-directions, respectively,
and the constitutive equations for orthotropic
materials, in general, are given as (Lekhnitskii,
1981)

(2)

hi) and below (- h2< z< 0) the c:rack surface.
The upper and lower half-spaces are then regard­
ed to be fiber-reinforced along the x-( (1 =0°) and
y-directions «(1 =90°), respectively.

2.1 Governing Equations
Upon assuming that external loadings are ap­

plied such that the resulting field variables are
independent of y-axis, the displacement field is
written as

90'

o' z

- 2h - -F:::::::====r
I- 2a-l

2. Problem Definition and
Formulation

isotropic bimaterials are in frictionless contact
close to the crack tip, while Sinclair (1980) and
Itou (1986) represented the interface crack with a
finite wedge angle. Atkinson (1977) and Delale
and Erdogan (1988) suggested a diffusive inter­
facial layer as an alternative to the ideal interface.
The frictionless contact model was later extended
by Wang and Choi (1983) to the interface crack
problem of dissimilar anisotropic materials.

In this paper, the stress analysis is performed
for the in-plane and anti-plane problem of an
interlaminar crack in dissimilar orthotropic com­
posite materials. Based on the microscopic obser­
vation that delamination in the fiber-reinforced
laminated composite is a matrix-dominated, pro­
gressive failure mechanism (Wang and Wang,
1979), the crack is embedded within a matrix
interlayer bounded by the dissimilar orthotropic
half-spaces. The interlayer models the matrix-rich
interlaminar region of the fibrous composite lami­
nate, which is also justifiable by the fact that
layers of such composite laminates are usually
bound together by the same matrix material in the
constituent fibrous layers (Jones, 1975). The stiff­
ness matrix method (Choi and Thangjitham,
1991 a,b) is extended to formulate the current
crack problem as a system of singular integral
equations of the first kind. As numerical illustra­
tions, the response of an interlaminar crack in a
[0°/90°] laminated composite to in-plane normal,
in-plane shear, and anti-plane shear loadings is
presented in terms of major and coupling stress
intensity factors. Under each applied loading, the
effects of relative crack size, crack location, and
fiber volume fraction are discussed.

Dissimilar orthotropic half-spaces bound
together by a matrix-rich interlaminar region are
considered. The interlaminar region is modeled in
the form of an interiayer of uniform thickness 2h
containing the crack of length 2a as shown in Fig.
1. As a result, the interlayer can be represented as
two separate layers but with the identical
isotropic matrix properties located above (O<z<



54 Hyung Jip Choi

(3)

where Pj(x), j = I, 2, 3, are functions describing
the applied crack surface tractions.

By defining a set of auxiliary functions as

the mixed conditions in Eqs. (6) can now be

written as a set of three homogeneous conditions
in terms of the auxiliary functions, subjected to

the restrictions to ensure the continuity and
single-valuedness of displacements outside the
crack surface:

(8)

(7)

¥1(x) = tx (wi - wt)

¥z(x)= tx (ui - ut)

¥3(X)= tx (vi - vt)

; Ixl<oo

¥k(X)=O

; a<lxl<oo

1: ¥k(x)dx=O

; k= 1,2,3

2.3 General Solutions
By employing the Fourier integral transform

technique, the governing equations (3) are readily

solved to yield the general solutions for the dis­
placement components of orthotropic half-spaces

satisfying Eqs. (5) such that

manner.
2.2 Boundary and Interface Conditions
By dividing the interlayer into two· regions

above and below the cracked plane (Fig. I), the

laminate is modeled as a 4-layer medium. The
upper/lower half-space is labelled as the first/
fourth layer, while the upper/lower region of the

interlayer is labelled as the second/third layer.
The condition of displacement continuity at the

perfectly bonded layer interfaces and that of trac­
tion equilibrium are to be satisfied such that

In the absence of body forces, the displacement

equilibrium equations are expressed as

azu azu ( ) azw 0
Cll axZ + C55~+ C13+ C55 axaz =

azu azw azw
(C13+C55) axaz +C55--a.xz+C33~=O

azv azv 0
CBB ax2 + C4 azz =

It is seen from the foregoing basic equations
that the in-plane deformation, u and w, and the
anti-plane deformation, v, are decoupled from

each other. In what follows, however, a general
solution procedure is provided which uniformly

enables the analysis of both the in-plane and
anti-plane crack problems in a simultaneous

where s is the transform variable, F kj(s), k= 1,4,

j = I, 2, 3, are the unknowns to be evaluated, Il kO

=(CU)/Ci:»l/Z, and Ilkj, k=l, 4, j=l, 2, are
positive roots of the characteristic equation:

Cj~)CJ~)llt+[(Ci;)+CW)Z- Cl~)Cj;)

-(CJ~»)2]I1~+Cl~)CJ~)=O;k= 1,4 (10)

and Rkj, k= I, 4, j= I, 2, are the material con­
stants

; Ixl<oo, k=l, 3
(6zz ); = (6ZZ)t+l, (rxz); =( rXZ)t+l,

(ryz);;=(ryz)t+l;lxl<oo, k=I,2,3 (4)

while the regularity conditions at infinity are

imposed as

(6zz)t=O, (rxz)t=O, (ryz)t=O,

(6zz).j=O, (rxz).j=O, (ryz).j=O

; Jxz+zz ~ 00 (5)

where the subscript k or k + I denotes the layer
number and the superscript +/ - indicates the
layer upper/lower surface.

The mixed boundary conditions on the plane
containing the crack (the interface between the
second and third layers) are expressed as

; k= 1,4 (9)

- + - + - +Uz = U3' Vz = V3, Wz = W3

;a<lxl<oo
(6ZZ)j=Pl(X), (rxz)t=pz(x), (rYZ)t=P3(X)

; Ixl < a (6)

Cl~) - CJ~)ilL
Rkj (Cl;) + CJ~)llkj (II)

From Eqs. (2) and (9), the general solutions for

the traction components are obtained as



Stress Singularities in Dissimilar Orthotropic Composites Containing an lnterlaminar Crack 55

eC-l)..IriSIA.lrJZ-iSXds,

For the matrix interlayer having isotropic prop­
erties, there are only two independent elastic

constants such that C ll =C22=C33=2/-lm(l-Lim)1
(I-2Lim)' C12 = C13= CZ3=2/-lmLim/(I-2Lim), and

C4 = C55 = C66 = /-lm = E m12( Lim + I) where /-lm, Lim'
and Em are shear modulus, Poisson's ratio, and
Young's modulus of the matrix phase of fiber
composites, respectively. The roots of the charac­
teristic equation (10) then become repeated and
equal to unity, with the general expressions of
displacements and tractions for this special case
given as (Choi and Thangjitham, 1991a)

(16)

where dk(s, z) and O'k(S, z) are vectors for the
displacements and tractions of the kth layer,
respectivel~, in which overbars denote quantities
in the Fourier transformed domain (s, z).

The'tractions O'l(s) at the upper(+)1
lower( -) surface of each layer can be: expressed
in terms of the corresponding displacements
dl(s) such that

2.4 Stiffness Matrix Formulation
For the entire 4-layer medium, a total of eigh­

teen unknowns exist (three unknowns F kj, k= I,
4, j = I, 2, 3, for each half-space and six un­
knowns Akj and Bkj, k=2, 3, j= 1,2,3, for each
region of the interlayer), yet to be evaluated by
applying Eqs. (4) and (7). As an efficient ap­
proach to accomplishing this intractable task, the
stiffness matrix formulation (Choi and Thang­
jitham, 1991 a,b) is extended to the analysis of the
current crack problem.

The following quantities are then introduced as

d k=[ - iWk Uk VkY' (l4a)
O'k=[ - i( (1ZZ)k (rXZ)k ( ryzhY (l4b)

where Kiik)(S), i=l, 2, k=l, 4, are 3x3 symmet­
ric local stiffness matrices for the orthotropic
half-spaces and K.~k)(S), i, I, 2, k=2, 3, are 3

X 3 submatrices of the 6 x 6 real and symmetric
local stiffness matrices for the matrix interlayer
(Appendix), together with the following
asymptotic behavior for large values of lsi:

I· I K(k)() {Kg·); i.= jIm-- .' ,=
Isl-"" S 'J. 0; i =1= j

in which Kg'.,>, i = I, 2, denotes 3 X 3 symmetric
submatrices containing nonzero limiting values.

By defining iik(S)= d;(s)= d:+l(s), k= I, 3,
as vectors for the interfacial displacements com­
mon to the perfectly bonded layer interfaces, the
traction equilibrium on the cracked plane can be
written as

(12); k=l, 4

( ) - ( - l)k 1~1 I' C(k)Fryz k--~ _~ S IlkO 44 k3

e(-l)kISIAAloZ-iSXds

I 1~u k=2ii _)(Ak1+zAkz)coshsz

+(Bkl +zBkz)sinhsz]e-iSXd"

Wk= 2~ l:i[(Akl +ZA k2 - ~,m Bkz)sinhsz

+(Bkl+zBkZ - ~m Akz)coshsZ]e-isXds,

vk=-21 1~(Ak3coshsz+ Bk3sinhsz)e-iSXds
7[ -~

; k=2,3 (l3a)

«(1ZZ)k=~1:i{[2S(Akl +ZAkZ)-(Rm+ l)Bd

coshsz
+ [2s(Bkl + zBkZ)- (Rm+ I )Ad

sinhsz}e-iSXds)

~1~(rXZ)k = 2; _~([2s(Bkl +zBkZ )+(1- Rm)Akz]

coshsz
+ [2s(Akl + zAkZ )+ (I - Rm)Bkz]

sinhsz}e-iSXds

(ryz)k=.E2!!!.-1~s(Ak3sinhsz+ BkaCoshsz)e-iSXds
7[ -~

; k=2, 3 (l3b)

where Akj(s) and Bkj(s), k=2, 3, j= I, 2, 3, are
the unknowns to be evaluated and Rm=3-4Lim.

KR) 81 + KU) d z- + KH) d3+ + KU) 83=0 (17)

where from Eqs. (7), (8a) and (14a), the vectors
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in which the vector

dz-(s) and iN(s) for the transformed crack sur­
face displac~ments are related to each other such

that

(19)

2.5 Integral Equations
After substituting the crack surface displace­

ment vectors in Eq. (20) into Eq. (15) and using

the values of 8(s) from Eq. (24), the tractions
0'"3+(X) acting on plane containing the crack can

be obtained by taking the inverse Fourier trans­

form such that

Upon noting that both vectors ifz-(s) and

d3+(S) define the common interfacial displace­

ments 8z(s) for an otherwise uncracked medium

and the additional deformation due to crack
extension, from Eqs. (17) and (18) in conjunction

with the asymptotic properties in Eq. (16), these
vectors can be decomposed as

where M(s) is a 3 X 3 mat"ix written as

M = - KH)L~Kr#.l +KH) HI +KU)Hz (26)

in which Hn(s),n= 1,2, are 3 X 3 matrices expres­

sed as

where L~ is a 3 X 3 symmetric constant ml'.trix
written as

(28)

(29)

where on the ground that both the second and
third layers belong to the same matrix interlayer,

the constants mum, I = I, 2, 3, are obtained as

H n= - Lo+n)IKii)L~KHl
+ Lo+n)z(Kif)L~Kiil- KH)L~Kifl)
+Lo+n)3(KH)L~Kz<il; n= I, 2 (27)

where Lij(s), i, j = I, 2, 3, are 3 X 3 submatrices of
L(s)=K-I(s).

It can be further shown from Eqs. (16),(26),

and (27) that the matrices Hn(s), n= 1,2, and M
(s) have the following asymptotic behavior

(20)
ifz-= 8z+ L~KHlL1if,

if3+ = 8z - L~KiilL1 if

where f;(s), i = I, 2, 3, are vectors of length three

expressed as

f 1= - Kii)L~KiflL1 if
fz=(KH)L~Kiil-KiPL~Kifl)L1if

f3=-KH)L~KHlL1if (23)

In matrix notation, the above system of equa­
tions is written as

L~=[KHl+ KHl]-1 (21)

Through the successive applications of Eq. (4)

to the layer local stiffness matrix equations (15)

and using Eq. (20), a global stiffness matrix
equation for the composite laminate containing

an interlaminar crack is constructed as

where K(s) is a 9 x 9 banded and symmetric
global stiffness matrix, 8(s) is a vector of length
nine for the unknown common interfacial dis­
placements, and f(s) is a vector of length nine
containing the geometric and material properties
of the interlayer and the crack surface displace­

ments.

K8=f (24) The foregoing results make it clear that the

singularities of the integral equations (25) are
attributable to the asymptotic values of the inte­
grand s-IM(s) as lsi approaches infinity. In
consequence, separation of the singular part in
Eq. (25) can lend itself to a system of Cauchy-type
singular integral equations of the first kind such

that
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. f1.m fa..'MJldt
27r(1-lIm) -a t-x

+ f:j;lk1n(x, t)!/Jn(t)dt=PI(X).

- fi.m fa .!MJldt
27r(1- lim) -a t - X

+ f:j;lk2n(x. t)!/Jn(t)dt=P2(x).

fif:r~~dt+f: k33(X. t)!/J3(t)dt

= Pa<x) ; Ixl < a (30)

where kij(x. t). i. j= 1.2.3. are referred to as the
bounded Fredholm kernels written as

function. To be noted herein is that the compati­
bility condition in Eq. (8b) is identically satisfied
by the above series expansion.

Upon substituting Eq. (32) into Eqs. (30) and
using the integral formula (Abramowitz and
Stegun.1965)

I fl Tn(r)dr
7r -I JT="?(r-~) Un-I(~)

;n::?I,I~I<1 (33)

the singularities of the integral equations are
removed such that

and a system of linear algebraic equations for Ckn
is obtained as

where Un( r) is the Chebyshev polynomial of the
second kind and H~m(~) is defined as

H~m(~)=afl klm(~. r)Tn(r) dr (35)
-I JT="?

'" 2+~ ~ H~m(~>Cmn=PI(~)
n=lm=l

; 1=1, 2.1~1<1

-'f-~I C3nUn-I(~) +~IH~3(~>C3n=Pa<~)

; I~I < I (34)

(36)

(37)

TCtJ.m 00 2 lm \[

4(1 - )Clk+~ ~ YknCmn=Ok
lim n=lm=1

; I = I. 2. k = I. 2. 3. . ..•

7rfi.m + ~ v33 _ <-3- 4 C3k f;:I.lknC3n-uk

; k= 1.2.3•...•

To recast the above functional equations (34)
into a solvable form. the following orthogonal
relation for Un( r) is utilized in the sense of the
weighted residual method (Abramowitz and
Stegun. 1965)

2fl {o. k=t=n
7i _IUk(r)Un(r)JT="?dr= I; k==n

kij(x. t)=- ~.(l+mij(s)+mij-J
sins(t-x)ds
; U. j)=(1. I). (2. 2). (3. 3)

11'" Ikdx. t)=-- -m12(s)cosS(t-x)ds
7r 0 s

11'" Ik21(x. t)=- -m21(s)coss(t-x)ds
7r 0 S

(31)

The singular integral equations obtained as
above demonstrate that there is no coupling
between Eqs. (30a, b) and Eq. (3Oc). This indi­
cates that the in-plane and anti-plane responses of
the interlaminar crack in the orthotropic bimater­
ials are independent of each other.

Via the existence of dominant Cauchy-type
singular kernels in Eqs. (30). the singular nature
of the auxiliary functions. !/Jk. k= I. 2. 3. is char­
acterized by the fundamental function of the inte­
gral equations (Muskhelishvili. 1953). Such a
function. in this case. corresponds to the weight
function of the Chebyshev polynomial of the first
kind (Erdogan. 1977). To preserve the correct
nature of singularities of the problem. the solu­
tions to the integral equations in the normalized
intervals. ~ = x/a and r = t / a. can then be expres­
sed as

where Ckno k = I. 2. 3. and n::? I. are the unknown
constants yet to be evaluated and Tn ( r) is the
Chebyshev polynomial of the first kind of order
n, and 1/(1- r 2)112 is the corresponding weight

I '"
!/Jk( r) J 1- r 2 ~/kn Tn( r)

;k=I.2,3.lrl<1 (32)

where the constants Y~;:' and 8k are expressed as

Y~;:'= f:H~m(~)Uk-1(~)JI -~2d~

8k= f:PI(~) Uk-1(~)JI- ~2d~ (38)

The series in Eq. (32) is truncated, in practice.
after the first N terms leading to a system of 3N
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simultaneous equations for Ckm k= I, 2, 3, and I
~ n~N in Eq. (37). This number N must be
large enough for the solution to be within a
specified degree of accuracy. Upon solving the
truncated version of Eq. (37), the dominant singu­

lar terms of crack-tip tractions can thus be
obtained from Eq. (25) in terms of the solutions

to the integral equations as

N

(azJH';)= 2(1~mlJm) ~/,nSn(';)+O(l),

f.1 N
([xz)t(.;) 2(1-'"lJm) ~/2nSn(';)+0(1),

N

([yz)t(';)=T~,C3nSn(';) +O( l)

;1.;1>1 (39)

where 0(·) denotes the higher order terms and
the function Sn(';) is written as

[';-sgn(g)Je-1]n
Sn(';) = r-:::21

sgn(';)" ';2-1

; n21, 1.;1> I (40)

The stress intensity factors at the right-hand

side crack tip can therefore be evaluated from the
solution structure obtained for the crack-tip trac­

tions such that

KI=~~rnJ';2_1 (azzH(';) = - 2(1~lJm) f;/,n

N

KII=~~rnJ.;z-I ([xzH(';)= - 2(1~mlJm) ~/2n
N

KIII=~~rnJ.;z-I ([yz)t(.;)= - ~m ~/3n (41)

where K" KII , and KIll are mode I, II, and III
stress intensity factors, respectively, and at the

left-hand side crack-tip, the negative sign is re­
placed by ( _l)n.

3. Results and Discussion

For the purpose of numerical illustrations, a
fiber-reinforced composite material with the fol­
lowing fiber (T300 graphite) and matrix (epoxy)

properties is considered (Chamis, 1984)

En =220.6 GPa, lJfJ =0.2, PfJ =8.9 GPa
Ef2 = 13.8 GPa, lJf2=0.25, Pn =4.8 GPa
E m=3.45 GPa, lJm=0.35, pm= 1.28 GPa

where the subscript m refers to the matrix phase,

while the subscripts 1 I and 12 denote the

longitudinal and transverse directions of the fiber

phase, respectively.
By regarding the fibrous composite as effective­

ly homogeneous and orthotropic, the correspond­
ing elastic stiffness constants Cljkl, k= I, 4, are

evaluated via the composite micromechanics
equations (Chamis, 1984). For the fiber volume

fraction of Vf =0.5, the values of stiffness con­
stants for the upper (8=0°) and lower (8=90°)

orthotropic half-spaces are obtained as

upper half-space

C1P=114GPa, Cg>=CW=8.7GPa
Cg>= C!1I=3.3 GPa, Cg>=3.4 GPa
C~J)=2.7GPa, CJg) = CJ~I=3.2 GPa
lower half-space
C!tI=CW=8.7GPa, CW=114GPa
CHI = CW = 3.3 GPa, CW = 3.4 GPa

C~11= CJ~I=3.2GPa, CJt l =2.7 GPa

Without loss in generality, the following modes
of loadings are prescribed in which the crack

surface loading functions Pj(x), j= 1,2,3, in Eq.

(6b) are given as:
For the in-plane normal (mode I) loading

p,(x)=-ao, P2(X)=0, PJ(x)=O;lxl<a

For the in-plane shear (mode II) loading

p,(x)=O, P2(X)=-[a, PJ(x)=O; Ixl<a

For the anti-plane shear (mode III) loading

PJ(x)=O, P2(X)=0, P3(X)=-Sa; Ixl<a

where aa, [a, and So are, respectively, the magni­
tudes of in-plane normal, in-plane shear, and

anti-plane shear tractions uniformly applied on

the crack surface.
Depending on the loading conditions, the series

in Eq. (32) can either be expanded in terms of odd

or even numbers. Specifically, under mode I load­
ing, the Chebyshev polynomials for #, and #2 are
to be expanded in terms of odd and even num­
bers, respectively, while the reverse is true under
mode II loading. For the case of mode III load­
ing, the polynomial for #3 is to be expanded in
terms of odd numbers. In this manner, a twelve­

term expansion of the Chebyshev polynomials is
found to suffice in obtaining the solution with a
required degree of accuracy, together with the

numerical evaluation of related integrals based on
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Fig. 2 Variation of major stress intensity factors as a
function of relative crack size hia for hllhz
= rand vf=O.5

next considered. Specific results are obtained for
hia= I and plotted in Figs. 4 and 5 for the major
and coupling stress intensity factors, respectively.
Figure 4 illustrates that the values of ~ experi­
ence slight and monotonic increases as hi/2h

becomes relatively large. On the other hand, the

542 3
h/a

Variation of coupling stress intensity factors
as a function of relative crack size h/a for
h l / hz= I and Vr=O.5

0.96

1.00 ~--_._-,.._._~-------

Fig. 3

the Gauss-Chebyshev and Gauss-Legendre qua­
drature formulas (Abramowitz and Stegun, 1965).
It is noted that, in the present discussion, the

stress intensity factors are evaluated at the right­
hand side crack tip and for V; =0.5 unless other­

wise stated.
With the interlaminar crack located at the

midplane of the interlayer such that hI!h2 ==I, the
values of major stress intensity factors, K;, i = I,
II, Ill, are shown in Fig. 2 as a function of

relative crack size hia, to be directly identified

with the modes of applied loadings. In this figure,
the normalized stress intensity factors are obser­

ved to increase monotonically in proportion to

the ratio hia but remain below the upper bound
of unity. This may be indicative of improved

load-earrying capacity of the fibrous laminated

composite against fracture in comparison with
that of a conventional homogeneous material of

the same extent.

Because of the mismatches of layer material
properties, the mixed-mode behavior is predicted

in Fig. 3 by the simultaneous occurrence of coupl­

ing stress intensity factors K II and K I under mode
I and II loadings, respectively. Such values of K II

and K 1 are, however, becoming insignificant as hi

a increases. In particular, a crack-tip state of

compressive singular normal stresses is depicted
under the in-plane shear loading, as indicated by

the negative values of K1• Owing to the antisym­

metry of mode II loading, the K I at the left-hand
side crack tip is equal in magnitude but opposite

in sign, implying the partial crack closure at one
of the crack tips. Although the initial assumption

of a frictionless, open crack model may thus be
violated, in the light of general loading conditions
where there exists a sufficiently large component

of tensile loading, such negative solutions for K I

can have a meaning provided that the super­
imposed values of K 1 at both the crack tips
become positive. To be noted is that under mode
III loading, only the values of Kill are induced as
the major crack-tip response and there occurs no
mixed-mode stress intensification.

The elfect of relative crack location, h1/2h, is
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Fig. 5 Variation of coupling stress intensity factors
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values of K II and Kill are influenced to a much
greater extent by hl/2h when compared with
those of K!. In Fig. 5, it is shown that the signs of
coupling stress intensity factors may change with
respect to varying crack locations within the inter­
layer. Of interest in this figure is that the mixed­
mode behavior appears to vanish when the crack
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is located around hd2h=0.55.
It is now worth mentioning that in going to

limit hia=O and h1/2h=0 or I, the problem
reduces to that of bonded dissimilar orthotropic

half-spaces containing the crack at the ideal
nominal interface. The integral equations de­

scribing the in-plane behavior are then changed to

those of the second kind (Sun and Manoharan,
1989; Dhaliwal and Saxena, 1990; Hwu, 1993).

Because the corresponding nature of crack-tip
singularities is oscillatory type and different defi­

nitions of stress intensity factors are required, the

results for these limiting cases are not provided

herein.

For the fixed values of hia= I and hllh2 = I,
substantial effects of fiber volume fraction Vf on
the major stress intensity factors are presented in
Fig. 6. Observed in this figure is that increased
fiber content from the isotropy of the matrix
phase ( Vf=O) tends to lower the major intensifi­
cation of crack-tip tractions. The overall increases
in fiber composite elastic moduli in parallel with
Vf , especially in the fiber direction, are under­
stood to be mainly responsible for such a reduc­
tion in the magnitudes of major stress intensity
factors. For the case of coupling stress intensity

factors as shown in Fig. 7, the reverse trend is
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Appendix

The 6x6 local stiffness matrices for the upper/
lower region of the matrix interlayer are written

as

Kg I KgI 0 KUI Kg I 0
Kg) Kif) 0 KUI Kiskl 0

o 0 K~3k) 0 0 K~t)

KU) Ki.k) 0 K~':) K~t) 0
mt) Kit) 0 K~Sk) K~t) 0

o 0 K~t) 0 0 KJt)

; k=2, 3 (Al)

with the following explicit expressions for the

elements K&k)(S), k=2, 3, given as

Klt)=K~:)= - r k[hkS2+S(3-4I1m)
sinhshkcoshshk]

Kl;) = - K~t)=2f.LmS +r~s(3-4I1m)sinh2shk

KU) = rk[hkS2coshshk +s(3 -4I1m)sinhshk]
Kg)= - Ki.:) = rkhks2sinhshk
K2<;) = K~Sk)= r k[hkS2- s(3-4I1m)sinhshkcoshshk]
K2<t) = rk[S(3- 4l1m)sinhshk - hks2coshshk]

K~f) = K6!f) f.LmScos hshk
sinhshk

K~t)= - )lmS (A2)
smhshk

r 4,um(l- 11m)
k Ms2-(3-4I1m)2sinh2shk (A3)

while the 3 X 3 local stiffness matrices for the
upper/lower orthotropic half-space are given as
follows, together with the corresponding elements
K&k)(S), k=l, 4, such that

[

Kg) Kg) 0 ]
Kltk )= m;) Ki;) 0 ; (k, t)=(l, 2), (4, 1)

o 0 K~f)

(A4)
C(k)

Kg) R 33R Isl(AkIRkl- Ak2R k2 )kl- k2

Kg) R(-~~ [SO;)RkIRdAk2-Akl)]
kl k2

-( -l)ksCI;)
C(k)

Ki;) R ~R Isl(A k2R kl - AklRd
ki k2

K~f)=lsIAkOCJ:) (A5)


